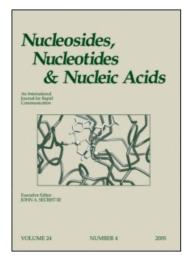
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Synthesis and Antiviral Evaluation of Some 3'-Fluoro Bicyclic Nucleoside Analogues

Christopher McGuigan^a; Antonella Carangio^a; Robert Snoeck^b; Graciela Andrei^b; Erik De Clercq^b; Jan Balzarini^b

^a Welsh School of Pharmacy, Cardiff University, Cardiff, UK ^b Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium

Online publication date: 02 October 2004

To cite this Article McGuigan, Christopher , Carangio, Antonella , Snoeck, Robert , Andrei, Graciela , De Clercq, Erik and Balzarini, Jan(2004) 'Synthesis and Antiviral Evaluation of Some 3'-Fluoro Bicyclic Nucleoside Analogues ', Nucleosides, Nucleotides and Nucleic Acids, 23: 1, 1-5

To link to this Article: DOI: 10.1081/NCN-120027813 URL: http://dx.doi.org/10.1081/NCN-120027813

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 23, Nos. 1 & 2, pp. 1–5, 2004

Synthesis and Antiviral Evaluation of Some 3'-Fluoro Bicyclic Nucleoside Analogues[†]

Christopher McGuigan,^{1,*} Antonella Carangio,¹ Robert Snoeck,² Graciela Andrei,² Erik De Clercq,² and Jan Balzarini²

¹Welsh School of Pharmacy, Cardiff University, Cardiff, UK
²Rega Institute for Medical Research, Katholieke Universiteit Leuven,
Leuven, Belgium

ABSTRACT

The synthesis of 3'-fluoro analogues of recently discovered highly potent anti-VZV furanopyrimidine deoxynucleosides (BCNAs) is herein reported, for both the alkyl and alkylphenyl series. The compounds are tested against a range of herpes viruses and display poor activity, strongly supporting the notion of the importance of the presence of a 3'-OH for antiviral activity.

Key Words: VZV; Bicyclic nucleoside analogues; 3'-OH.

INTRODUCTION

We have reported^[1] the potent and selective anti-VZV (Varicella Zoster Virus) activity for bicyclic furanopyrimidine deoxynucleosides such as 1 (Figure 1). The corresponding alkylphenyl analogues 2 are even more potent, with EC₅₀ values vs.

www.dekker.com

[†]In honor and celebration of the 70th birthday of Professor Leroy B. Townsend.

^{*}Correspondence: Christopher McGuigan, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3XF, UK; Fax: +44-29-2087-4537; E-mail: mcguigan@cardiff.ac.uk.

2 McGuigan et al.

Figure 1. Structures of potent anti-VZV bicyclic furanopyrimidines (BCNAs). For optimal activity R is C_8H_{17} and R' is C_5H_{11} .

VZV in vitro in the higher picomolar range.^[2] The compounds exhibit complete specificity for VZV with no activity detectable against any other DNA or RNA viruses studied. We have now prepared a moderate series of compounds of this general family and recently reviewed the SAR^[3,4] and biochemistry^[5,6] of these agents.

Whilst we have carried out fairly extensive studies in the base region of these compounds, we have to date reported little variation in the sugar. We did note^[4] that the 3'-methoxy analogue of (1), in fact with a C_{10} alkyl side chain, was > 10,000 times less active than the parent 2'-deoxy nucleoside. This indicated little tolerance for modification at the 3'-position.

The introduction of fluorine atoms in the sugar ring of nucleosides is well established both as a means of stabilising the glycosidic bond, as in FMAU^[7] or indeed as to afford an antiviral effect, as in FLT. $^{[8-10]}$

Scheme 1.

3'-Fluoro Bicyclic Nucleoside Analogues

Table 1.

	$EC_{50}/\mu M$				
Compound	VZV OKA	VZV YS	VZV TK ⁻ 07	VZV TK ⁻ YS	CC ₅₀ /μM
3a	> 20	> 20	> 20	> 200	> 200
3b	> 2	> 2	> 2	> 2	5.2
1	0.008	0.024	> 50	> 50	> 50
2	0.0003	0.0001	> 5	> 5	> 200

Thus, we sought the synthesis of analogues **3** of **1** and **2** with a 3'-fluorine substituent. The key synthon required for this preparation, following our established procedures^[1,2] was 5-iodo-2',3'-dideoxy-3'-fluorouridine. This type of compound has been prepared previously^[10,11] for the synthesis of 3'-fluoro analogues of thymidine and uridine, and we closely followed these published procedures (Scheme 1).

Thus, selective 5'-protection of 5-iodo-2'-deoxyuridine (IDU, **4**) with trityl chloride followed by treatment with mesyl chloride gave **5** in 94% yield. Following the published procedure ^[11] the configuration of the 3'-group was readily inverted to give the xylo compound **6** in 64% using refluxing ethanic sodium hydroxide. The 3'- β configuration of **6** was confirmed by a positive NOESY experiment (data not shown).

Treatment of **6** with DAST^[12] in dry THF at ambient temperature gave the 5'-trityl-3'-fluoro nucleoside **7** in moderate yield, and the 5'-trityl group was removed under standard acidic conditions to yield **8** as the key synthon. The successful introduction of a fluorine into **8** was confirmed by ¹⁹F-NMR, with a signal at δ —174 which showed a large doublet splitting (J = ca. 50Hz) to the 3'-H in the ¹H-NMR and to the 3'-C (J = ca. 175 Hz) in the ¹³C NMR. All of these data are consistent with literature values on close analogues.^[11] The stereochemistry of the fluorine atom in **7** (and thus **8**) was fully confirmed as alpha by a NOESY experiment. Thus a clear cross peak between H-1' and H-2' (alpha) distinguished the two H2' protons, with the beta proton being more upfield (ca. 2.6, 2.4 ppm). A clear cross peak is hence noted between H-2' (beta) and the H-3' proton, proving the orientation of the 3'-fluorine as alpha.

Following our established procedures^[1,2] synthon **8** was readily converted into the octyl (**3a**) and p-pentylphenyl (**3b**) BCNAs using a two-step Pd- and Cu-catalysed process (Scheme 1).^a Full spectroscopic, spectrometric and analytical data completely supported the structure and purity of **3a-b** and confirmed the retention of a 3'-alpha-F Substituent.

Thus, compounds 3a-b were evaluated as inhibitors of VZV in vitro following our established procedures, and using standard compounds 1 and 2 as positive biological controls, [1,2] with data being presented in the Table 1.

As noted in the Table 1 compounds 3a-b display no detectable anti-VZV activity at the highest concentration tested; 3a is thus > 1000 times less active than its parent deoxynucleoside 1 and 3b is > 10,000 times less active than 2. Interestingly, 3b does display some cytotoxicity, at ca. 5 μ M. This is unusual for compounds of the BCNA family which are in general non-cytotoxic, although some long chain analogues of 2 did display toxicity at ca. 20 μ M. [2]

3

^aSelected experimental procedures and data for **3a-b**: 3-(2,3-Dideoxy-3-fluoro-β-D-ribofurano-syl)-6-(octyl)-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one (**3a**).

4 McGuigan et al.

These data clearly show that the 3'-fluoro analogues of **1** and **2** are not active against VZV, and that the 3'-OH appears to be essential for antiviral activity. This confirms our earlier conclusion, based on the 3'-methyl ether^[4] and implies little tolerance in general for 3'-modification. Most likely, it may be that a free 3'-OH is necessary for (VZV) thymidine kinase-mediated activation of those agents, which is thought to be pre-requisite for anti-VZV activity, ^[5] or that a subsequent metabolic step depends on the presence of a free 3'-OH, or both. We are currently pursuing a number of strategies to address these questions.

To a stirred solution of 5-iodo-2',3'-dideoxy-3'-fluorouridine (200 mg, 0.562 mmol) in dry dimethylformamide (5 ml) at room temperature under a nitrogen atmosphere, 1-decyne (0.3 ml, 1.68 mmol), tetrakis(triphenylphosphine) palladium (0) (65 mg, 0.0562 mmol), copper (I) iodide (21 mg, 0.112 mmol) and diisopropylethylamine (0.2 ml, 1.12 mmol) were added. The reaction mixture was stirred at room temperature for 19 hours, after which time TLC (chloroform/methanol 95:5) showed complete conversion of the starting material. Copper(I) iodide (21 mg, 0.112 mmol), and triethylamine (8 ml) were added to the mixture which was subsequently refluxed for 8 hours. The reaction mixture was then concentrated in vacuo, and the resulting residue was dissolved in dichloromethane/methanol (1:1) (6 ml), and an excess of Amberlite IRA-400 (HCO₃⁻ form) was added and stirred at room temperature for 30 minutes. Then the resin was filtered, washed with methanol and the combined filtrate was evaporated to dryness. The crude product was purified by silica column chromatography, using an eluent of chloroform/methanol (95:5). The appropriate fractions were combined and the solvent was removed in vacuo to yield the product, which was further purified by trituration with methanol, yielding the pure product (178 mg, 86%) as a white solid. Mp: $> 240^{\circ}$ C (decomposes).

IR (KBr): 3338.0 (OH), 2921.9 (aliphatic), 1671.9 (CO amide), 1112.5 (C–F). 1 H-nmr (d₆-DMSO; 300 MHz): 8.57 (1H, s, H-4), 6.53 (1H, s, H-5), 6.20 (1H, dd, J = 5.6 and 8.3 Hz, H-1'), 5.36 (1H, dm, J = 49.3 Hz H-3'), 5.22 (1H, t, J = 5.2 Hz, 5'-OH), 4.33 (1H, dm, J = 26.2 Hz, H-4'), 3.64 (2H, m, H-5'), 2.74 (1H, m, H-2_a'), 2.63 (2H, t, J = 7.3 Hz, α -CH₂), 2.31–2.08 (1H, m, H-2_b'), 1.59 (2H, m, CH₂), 1.23 (10H, m, 5 × CH₂), 0.84 (3H, t, J = 6.6 Hz, ω -CH₃). 13 C-nmr (d₆-DMSO; 75 MHz): 14.3 (CH₃), 22.4, 26.7, 27.7, 28.7, 28.9, 29.0, 31.6 (7 × CH₂), 39.5 (d, J = 20.2 Hz, C-2'), 61.0 (d, J = 11.1 Hz, C-5'), 86.5 (d, J = 22.5 Hz, C-4'), 88.0 (C-1'), 95.2 (d, J = 174.2 Hz, C-3'), 100.1 (C-5) 107.0 (C-4a), 136.9 (C-4), 154.1 (C-6), 158.9 (C-2), 171.7 (C-7a). MS (ES⁺) m/e 389 (MNa⁺, 100%), 271 (baseNa⁺, 10%). Accurate mass: C₁₉H₂₇N₂O₄FNa requires : 389.1853; found: 389.1847.

3-(2,3-Dideoxy-3-fluoro-β-D-ribofuranosyl)-6-(4-pentylphenyl)-2,3,-dihydro-furo-[2,3-d]pyrimidin-2-one (3b). This was prepared entirely as outlined for (**3a**) above, but using 4-*n*-pentylphenylacetylene, to yield the product (235 mg, 60%) as a white solid. Mp: > 240°C (decomposes).

IR (KBr): 3354.9 (OH), 2921.3 (aliphatic), 1668.7 (CO amide), 1112.2 (C–F). 1 H-nmr (d₆-DMSO; 300 MHz): 7.99 (1H, s, H-4), 7.74 (2H, H_a)—7.33 (2H, H_b) (AA′BB′ system, J = 8.1 Hz), 7.22 (1H, s, H-5), 6.25 (1H, dd, J = 5.7 and 7.9 Hz, H-1′), 5.39 (1H, dm, J = 50.1 Hz, H-3′), 5.28 (1H, t, J = 5.1 Hz, 5′-OH), 4.38 (1H, dm, J = 25.9 Hz, H-4′), 3.70 (2H, m, H-5′), 2.79 (1H, m, H-2_a′), 2.61 (2H, t, J = 7.5 Hz, α-CH₂), 2.39–2.16 (1H, m, H-2_b′), 1.65 (2H, m, CH₂), 1.30 (4H, m, 2 × CH₂), 0.86 (3H, t, J = 6.7 Hz, CH₃). 13 C-nmr (d₆-DMSO; 75 MHz): 14.3 (CH₃), 22.3, 30.8, 31.2, 35.3

3'-Fluoro Bicyclic Nucleoside Analogues

 $(4 \times CH_2)$, 39.2 (d, J = 19.8 Hz, C-2'), 61.0 (d, J = 11.1 Hz, C-5'), 86.6 (d, J = 22.6 Hz, C-4'), 88.2 (C-1'), 95.1 (d, J = 174.3 Hz, C-3'), 99.0 (C-5) 107.5 (C-4a), 124.9 (C-H_b), 126.1, (C-*ipso*), 129.4 (C-H_a) 138.0 (C-4), 144.5 (C-*para*), 154.11 (C-6), 154.4 (C-2), 171.5 (C-7a). MS (ES⁺) m/e 423 (MNa⁺, 100%). Accurate mass: $C_{22}H_{25}N_2O_4FNa$ requires : 423.1696; found: 423.1700. Anal. Calcd for $C_{22}H_{25}N_2O_4F$: C, 65.99%; H, 6.29%; N, 7.00%. Found: C, 66.19%; H, 6.05%; N, 6.87%.

ACKNOWLEDGMENTS

The authors are grateful to Mrs. Anita Camps, Mr. Steven Carmans, and Ms. Lies Vandenheurck for excellent technical assistance. This research was supported by grants from the Belgian Fonds voor Geneeskundig Wetenschappelijk Onderzoek, the Belgian Geconcerteerde Onderzoeksacties and The Leverhulme Trust. We also thank Helen Murphy for excellent secretarial assistance.

REFERENCES

- McGuigan, C.; Yarnold, C.J.; Jones, G.; Velázquez, S.; Barucki, H.; Brancale, A.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. J. Med. Chem. 1999, 42, 4479–4484.
- 2. McGuigan, C.; Barucki, H.; Blewett, S.; Carangio, A.; Erichsen, J.T.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. J. Med. Chem. **2000**, *43*, 4993–4997.
- 3. McGuigan, C.; Barucki, H.; Brancale, A.; Blewett, S.; Carangio, A.; Jones, G.; Pathirana, R.; Srinivasan, S.; Velázquez, S.; Yarnold, C.J.; Alvarez, R.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. Drugs Future **2000**, *25*, 1151–1161.
- 4. McGuigan, C.; Brancale, A.; Barucki, H.; Srinivasan, S.; Jones, G.; Pathirana, R.; Carangio, A.; Blewett, S.; Luoni, G.; Bidet, O.; Jukes, A.; Jarvis, C.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. Antivir. Chem. Chemother. **2001**, *12*, 77–89.
- 5. Sienaert, R.; Naesens, L.; Brancale, A.; De Clercq, E.; McGuigan, C.; Balzarini, J. Mol. Pharmacol. **2002**, *61*, 249–254.
- Balzarini, J.; Sienaert, R.; Liekens, S.; Van Kuilenburg, A.; Carangio, A.; Esnouf,
 R.; De Clercq, E.; McGuigan, C. Mol. Pharmacol. 2002, 61, 1140–1145.
- 7. Etzold, G.; Hintsche, R.; Kowollik, G.; Langen, P. Tetrahedron 1971, 27, 2463.
- 8. Koshida, R.; Cox, S.; Harmenberg, J.; Gilljam, G.; Wahren, B. Antimicrob. Agents Chemother. **1989**, *33*, 2083–2088.
- 9. Bazin, H.; Chattopadhyaya, J.; Datema, R.; Ericson, A.C.; Gilljam, G.; Johansson, N.G.; Hansen, J.; Koshida, R.; Moelling, K.; Oberg, B. Biochem. Pharmacol. **1989**, *38*, 109–119.
- 10. Herdewijn, P.; Balzarini, J.; De Clercq, E.; Pauwels, R.; Baba, M.; Broder, S.; Vanderhaeghe, H. J. Med. Chem. **1987**, *30*, 1270–1278.
- 11. Janta-Lipinski, M.; Costisella, B.; Ochs, H.; Hübscher; Hafkemeyer, P.; Matthes, E. J. Med. Chem. **1998**, *41*, 2040–2046.
- 12. Middleton, W.J. J. Org. Chem. 1975, 40, 574-578.

Received August 8, 2003 Accepted September 15, 2003

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/ Order Reprints" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081NCN120027813